Medical Systems Biology

You are here:  Teaching > WS2018/2019 > Einführung in die Bioinformatik (MolMed)

Einführung in die Bioinformatik (MolMed)

Dozent: Prof. Dr. Hans A. Kestler
  apl. Prof. Dr. Rainer Schuler
  mit Dr. Ludwig Lausser
Code

 

MOME.Ba5006

 

 

 

 


Aktuelles

Klausureinsicht: Freitag 15.03.2019 von 9:00 bis 10:00 Uhr in Raum N23/2622

Klausureinsicht: Freitag 1.03.2019 von 10:00 bis 11:00 Uhr in Raum O29/2006

 

Vorlesung

Dienstags 08:00 - 10:00 Uhr, N24:101


Übung

Dienstags 12:00 - 14:00 Uhr, O29:3001/3002 (16.10. - 23.10.)

Dienstags 12:00 - 14:00 Uhr, O29:3005/3006 (sonst)


Klausur

Freitag, den 15.2.2019, 10:00 Uhr (Hörsaal Klinik - Innere Medizin)

Nachklausur: Freitag, den 8.3.2019, 10:00 Uhr (O23:2609/2610)


Vorlesungsunterlagen

Organisatorisches

Einführung in R 1/2

Einführung in R 2/2

Datenstrukturen und Modelle

Algorithmen

Entwurfsmuster

Suchverfahren

Datenbanken I

Datenbanken II

Sequenzanalyse

Sequenzmuster

Datenanalyse

Clusteranalyse

Klassifikation


Übungsblätter

Blatt 1

Blatt 2

Blatt 3

Blatt 4

Blatt 5

Blatt 6

Blatt 7

Blatt 8

Blatt 9

Blatt 10

Blatt 11

Blatt 12


Sonstiges

Programmieren in R

R-Reference Card

database.RData

behandlungen.RData

hospitale.RData

dynProg.RData

multiples.RData

golub50train.RData

golub50test.RData


Zitieren

Um einen Journal-Artikel wiederzufinden müssen beim Zitieren mindestens die folgenden Angaben vorhanden sein: Autor(en) (für mehr als zwei Autoren kann man den Namen des Erstautors und et al. angeben), vollständigen Titel des Artikels, Journal Name (oder eine Abkürzung dessen), JahrVolumeAusgabe (number)Seite(n).

Latest News

 

Congratulations to Dr. Silke Werle for winning the 1st Prize with her pitch at the 1. Science Day held by ProTrainU. 

 

Our paper "Reconstructing Boolean network ensembles from single-cell data for unraveling dynamics in the aging of human hematopoietic stem cells" has been published in the Computational and Structural Biotechnology Journal.

 

The position paper "Is there a role for statistics in artificial intelligence" has been published online first in Advances in Data Analysis and Classification.

 

Our paper "Corona Health - A Study- and Sensor-Based Mobile App Platform Exploring Aspects of the COVID-19 Pandemic" has been published in the International Journal of Environmental Research and Public Health.

 

Our paper "Patient empowerment during the COVID-19 pandemic: Ensuring safe and fast communication of test results" has been published in the Journal of Medical Internet Research.

 

Our paper "Perspective on mHealth Concepts to Ensure Users’ Empowerment–From Adverse Event Tracking for COVID-19 Vaccinations to Oncological Treatment" has been published in IEEE Access.

  

Our report protocol "Digitalization of adverse event management in oncology to improve treatment outcome—A prospective study protocol" has been published in PLoS One.

 

We are happy we could contribute to Beutel et al (2021) "A prospective Feasibility Trial to Challenge Patient-Derived Pancreatic Cancer Organoids in Predicting Treatment Response" published in MDPI Cancers.