Medical Systems Biology

You are here:  Teaching > Thesis Projects

Thesis Projects

Mögliche Themen für Bachelor-/Masterarbeiten oder Projekte:

  • Reverse engineering einer Campus-Management Lösung:
    Wir suchen einen motivierten Studenten zum Reverse Engineering einer Datenbanksoftware. Aufgrund einer Insolvenz des Softwareherstellers läuft die bestehende Lösung aus. In diesem Projekt soll die Möglichkeit eine Fortführung/Migration der Datenbank/GUI in Eigenregie geprüft werden. Vertiefte Kenntnisse in Software Engineering sind von Vorteil. Das Projekt kann auch als HiWi-Job begleitend finanziert werden.
  • Merkmalsprojektion auf hochdimensionalen medizinischen Daten

    Technische Fortschritte in der Darstellung von einzelnen Zellen ermöglichen nun die Analyse von hochauflösenden medizinischen Daten auf Einzelzellebene, wie z.B. die Gewebszusammensetzungen von Tumoren. Um die immer größer werdenden Datensätze analysieren und visualsieren zu können, wurden in den letzten Jahren verschiedene neue Ansätze zur Dimensionalitätsreduktion hochdimensionaler Daten entwickelt. Diese Algorithmen zur Dimensionsreduktion lassen sich grob in zwei Kategorien einteilen: solche, die versuchen, die paarweise Distanzstruktur zwischen allen Datenpunkten zu erhalten (PCA, MDS), und solche, die die Erhaltung lokaler Distanzen gegenüber globalen Distanzen bevorzugen (t-SNE, Isomap). In diesem Projekt soll die Performance und Interpretierbarkeit unterschiedlicher Projektionsmethoden auf medizinischen Daten verglichen werden.

  • Visualisierung von Sequenzähnlichkeiten:
    Eine häufige Frage bei der Analyse von DNA-Sequenzen ist die Suche nach Motiven (Substrings einer bestimmten Länge), die in einer längeren Sequenz wiederholt vorkommen. Eine Möglichkeit zur effizienten Suche in DNA-Sequenzen ist die Repräsentation als DAWG (Directed Acyclic Word Graph). Um dem Benutzer die Suche nach charakteristischen Motiven zu erleichtern, ist eine intuitive Visualisierung solcher Strukturen notwendig. Ziel des Projekts ist eine prototypische Implementierung eines Visualisierungstools aufbauend auf unserer VennMaster-Software.
  • Konzeption und Evaluierung asynchroner/paralleler Schwarmalgorithmen:
    Particle Swarm Optimization ist ein populationsbasiertes Optimierungsverfahren, das der Schwarmintelligenz nachempfunden ist. Üblicherweise erfolgt das Update aller Partikel synchron. Für eine effiziente Parallelisierung sind jedoch asynchrone Updates besser geeignet. In diesem Projekt sollen Möglichkeiten für die Parallelisierung von Schwarmalgorithmen untersucht und in einem agentenbasierten Ansatz in der funktionalen Programmiersprache Clojure implementiert werden.
  • Erstellung einer Software zur visuellen Modellierung genregulatorischer Netzwerke:
    Boole'sche Netzwerke bilden genregulatorische Zusammenhänge als ein System Boole'scher Funktionen ab, das über die Zeit simuliert werden kann. Es existieren bereits Werkzeuge zur Simulation und Analyse solcher Netzwerke in der Statistiksprache R. Ziel dieses Projekts ist die Implementierung einer grafischen Umgebung zur Erstellung solcher Netzwerke (Eclipse/EMF/GMF) und evtl. die Anbindung an R (rJava).
  • Probabilistische Algorithmen für das Set Covering Problem:
    Das Mengenüberdeckungsproblem (Set Covering Problem) ist ein NP-vollständiges Problem. Dabei wird aus einem System von Teilmengen S eines Universums U eine möglichst kleine Teilmenge von S gesucht, die U vollständig abdeckt. Eine einfache Heuristik zur approximativen Lösung des Problems basiert auf einem Greedy-Ansatz. Diese approximativen Lösungen unterscheiden sich um einen Faktor von maximal ln|U| von der exakten (aber nicht effizient berechenbaren) Lösung. In diesem Projekt soll theoretisch und experimentell untersucht werden, ob und wie die Lösung der Greedy-Heuristik durch zufällige Änderungen der Algorithmen-Eingabe beeinflusst werden kann. Dabei soll zunächst eine Methode entwickelt werden, um zufällige kleine Teilmengensysteme zu erstellen und solche zu identifizieren, für die die Greedy-Heuristik stark von einer exakten Lösung abweicht. Solche worst-case-Eingaben sollen dann im Sinne einer "Smoothed Analysis" untersucht werden, d.h es soll ausgewertet werden, inwiefern bereits eine kleine Änderung der Eingabe zu einem deutlich besseren Ergebnis führt. Erkenntnisse hieraus sollen dann in die Entwicklung einer neuen probabilistischen Heuristik zur Lösung des Mengenüberdeckungsproblems einfließen.

Bei Interesse wenden Sie sich bitte an Prof. Dr. Hans A. Kestler. Geeignete eigene Themenvorschläge können ebenfalls berücksichtigt werden.

Job Openings

Wissenschaftlicher Mitarbeiter (m/w/d) 

 

Latest News

 

  1. Our paper "Prediction of resistance to bevacizumab plus FOLFOX in metastatic colorectal cancer-Results of the prospective multicenter PERMAD trial" has been published in PLoS One.

     

  2. "Introducing a machine learning algorithm for delirium prediction—the Supporting SURgery with GEriatric Co-Management and AI project (SURGE-Ahead)has been published in Age and Ageing.

Our paper "Segmentation-based cardiomegaly detection based on semi-supervised estimation of cardiothoracic ratio" has been published in Scientific Reports.

 

"Prospective study validating a multidimensional treatment decision score predicting the 24-month outcome in untreated patients with clinically isolated syndrome and early relapsing–remitting multiple sclerosis, the ProVal-MS study" has been published in Neurological Research and Practice.

 

Our paper "GatekeepR: an R shiny application for the identification of nodes with high dynamic impact in boolean networks" has been published online first in Bioinformatics.

 

Our paper "The Necessity of Interoperability to Uncover the Full Potential of Digital Health Devices" has been published in JMIR Medical Informatics.

 

"Multicentric pilot study to standardize clinical whole exome sequencing (WES) for cancer patients" has been published in npj Precision Oncology.

 

Our paper "AMBAR-interactive alteration annotations for molecular tumor boards" has been published in Computer Methods and Programs in Biomedicine.

 

"A protocol for the use of cloud-based quantum computers for logical network analysis of biological systems" has been published in STAR Protocols.

 

Our paper "A systems biology approach to define mechanisms, phenotypes, and drivers in PanNETs with a personalized perspective" has been published in npj systems biology and applications.

 

"Supporting SURgery with GEriatric Co-Management and AI (SURGE-Ahead): A study protocol for the development of a digital geriatrician" has been published in PLoS One.

 

"Self-Assessment of Having COVID-19 With the Corona Check Mhealth App" has been published in IEEE Journal of Biomedical and Health Informatics.


Our first quantum computing paper "Leveraging quantum computing for dynamic analyses of logical networks in systems biology" has been published in Patterns.