Mögliche Themen für Bachelor-/Masterarbeiten oder Projekte:
Merkmalsprojektion auf hochdimensionalen medizinischen Daten
Technische Fortschritte in der Darstellung von einzelnen Zellen ermöglichen nun die Analyse von hochauflösenden medizinischen Daten auf Einzelzellebene, wie z.B. die Gewebszusammensetzungen von Tumoren. Um die immer größer werdenden Datensätze analysieren und visualsieren zu können, wurden in den letzten Jahren verschiedene neue Ansätze zur Dimensionalitätsreduktion hochdimensionaler Daten entwickelt. Diese Algorithmen zur Dimensionsreduktion lassen sich grob in zwei Kategorien einteilen: solche, die versuchen, die paarweise Distanzstruktur zwischen allen Datenpunkten zu erhalten (PCA, MDS), und solche, die die Erhaltung lokaler Distanzen gegenüber globalen Distanzen bevorzugen (t-SNE, Isomap). In diesem Projekt soll die Performance und Interpretierbarkeit unterschiedlicher Projektionsmethoden auf medizinischen Daten verglichen werden.
Probabilistische Algorithmen für das Set Covering Problem:
Das Mengenüberdeckungsproblem (Set Covering Problem) ist ein NP-vollständiges Problem. Dabei wird aus einem System von Teilmengen S eines Universums U eine möglichst kleine Teilmenge von S gesucht, die U vollständig abdeckt. Eine einfache Heuristik zur approximativen Lösung des Problems basiert auf einem Greedy-Ansatz. Diese approximativen Lösungen unterscheiden sich um einen Faktor von maximal ln|U| von der exakten (aber nicht effizient berechenbaren) Lösung. In diesem Projekt soll theoretisch und experimentell untersucht werden, ob und wie die Lösung der Greedy-Heuristik durch zufällige Änderungen der Algorithmen-Eingabe beeinflusst werden kann. Dabei soll zunächst eine Methode entwickelt werden, um zufällige kleine Teilmengensysteme zu erstellen und solche zu identifizieren, für die die Greedy-Heuristik stark von einer exakten Lösung abweicht. Solche worst-case-Eingaben sollen dann im Sinne einer "Smoothed Analysis" untersucht werden, d.h es soll ausgewertet werden, inwiefern bereits eine kleine Änderung der Eingabe zu einem deutlich besseren Ergebnis führt. Erkenntnisse hieraus sollen dann in die Entwicklung einer neuen probabilistischen Heuristik zur Lösung des Mengenüberdeckungsproblems einfließen.
Bei Interesse wenden Sie sich bitte an Prof. Dr. Hans A. Kestler. Geeignete eigene Themenvorschläge können ebenfalls berücksichtigt werden.
Our paper "A systems biology approach to define mechanisms, phenotypes, and drivers in PanNETs with a personalized perspective" has been published in npj systems biology and applications.
"Supporting SURgery with GEriatric Co-Management and AI (SURGE-Ahead): A study protocol for the development of a digital geriatrician" has been published in PLoS One.
"Self-Assessment of Having COVID-19 With the Corona Check Mhealth App" has been published in IEEE Journal of Biomedical and Health Informatics.
Our first quantum computing paper "Leveraging quantum computing for dynamic analyses of logical networks in systems biology" has been published in Patterns.
Our paper "Unsupervised domain adaptation for the detection of cardiomegaly in cross-domain chest X-ray images" has been published in Frontiers in Artificial Intelligence.
"Vaccine Side Effects in Health Care Workers after Vaccination against SARS-CoV-2: Data from TüSeRe:exact Study" has been published in Viruses-Basel.
"PREDICT-juvenile-stroke: PRospective evaluation of a prediction score determining individual clinical outcome three months after ischemic stroke in young adults – a study protocol" has been published in BMC Neurology.
Our paper "Federated Electronic Data Capture (fEDC): Architecture and Prototype" has been accepted for publiaction in the Journal of Biomedical Informatics.
Our paper "Efficient cross-valdation traversals in feature subset selection" has been published in Scientific Reports.
Our paper "CANTATA - prediction of missing links in Boolean networks using genetic programming" has been published in Bioinformatics.
Our paper "Interaction Empowerment in Mobile Health: Concepts, Challenges, and Perspectives" has been published in the Journal of Medical Internet Research mhealth and uhealth.
Our paper "Identification of dynamic driver sets controlling phenotypical landscapes" has been published in the Computational and Structural Biotechnology Journal.