Medical Systems Biology

You are here:  Teaching > SS 2019 > Hybridrechnen

Hybridrechnen

 
Dozent:     Prof. Dr. Bernd Ulmann
 
Prof. Dr. Hans A. Kestler
Alexander Groß

Code: CS8797.000






Vorlesungszeiten und Ankündigung

  • Kompaktkurs
  • Blockveranstaltung: 18. Februar bis 1. März 2019 (täglich ca. 4 Std.) mit anschließender Projektarbeit
  • Beginn: Montag, 18. Februar, um 14:00 Uhr
  • Raum: O27/2203
 

Inhalt und Themen

Hybrid- und Analogrechner sind Technologien mit großem Potenzial für künftige Applikationen im Bereich des High- Performance Computing und des energieeffizienten Rechnens. Die Vorlesung stellt die grundlegenden Konzepte des Analog- und Hybridrechnens vor und stellt die Hauptunterschiede zur Verwendung von speicherprogrammierten Computern heraus. Die Studierenden erhalten eine Einführung in die Programmierung von Analogrechnern anhand von praktischen Beispielen.  

  • Vorlesung (40 h):

Inhalte:

- Grundlagen des Analog- und Hybridrechnens
- Historie
- Aufbau eines Analog / Hybridrechners
- Die Mathematik des Analogrechnens
- Analogrechnen als Paradigma
- Anwendungen
- FPAAs

  • Übung (20 h):

Die Kompaktkurs Hybridrechnen beinhaltet eine tägliche Präsenzübung, in der die Studierenden ihre bearbeiteten Übungsblätter mit den Dozenten besprechen.

  • Vor-/Nachbereitung (60 h):

Die Vor- und Nachbereitung des Kompaktkurs Hybridrechnen wird auf etwa 60 Stunden geschätzt. Dieser Zeitraum beinhaltet das selbstständige bearbeiten der Übungsblätter und Aufarbeitung der Vorlesungsstoffes.

  • Projekt (60 h):
Die Kompaktkurs Hybridrechnen wird durch ein selbstständig zu bearbeitendes Projekt abgeschlossen, in dem die Studierenden das Erlernte anwenden sollen.
 

Buch

Analog and Hybrid Computer Programming

 

Folien

Hybridrechnen

 

Sonstiges

Firmware

 

 

 

 

 

 

 

Job Openings

Wissenschaftlicher Mitarbeiter (m/w/d) 

 

Latest News

 

  1. "Recent Trends and Future Challenges in Learning from Data" has been published with Springer.

     

    Our paper "Permutation-invariant linear classifiers" has been published in Machine Learning.

     

    Our paper "Prediction of resistance to bevacizumab plus FOLFOX in metastatic colorectal cancer-Results of the prospective multicenter PERMAD trial" has been published in PLoS One.

     

  2. "Introducing a machine learning algorithm for delirium prediction—the Supporting SURgery with GEriatric Co-Management and AI project (SURGE-Ahead)has been published in Age and Ageing.

Our paper "Segmentation-based cardiomegaly detection based on semi-supervised estimation of cardiothoracic ratio" has been published in Scientific Reports.

 

"Prospective study validating a multidimensional treatment decision score predicting the 24-month outcome in untreated patients with clinically isolated syndrome and early relapsing–remitting multiple sclerosis, the ProVal-MS study" has been published in Neurological Research and Practice.

 

Our paper "GatekeepR: an R shiny application for the identification of nodes with high dynamic impact in boolean networks" has been published online first in Bioinformatics.

 

Our paper "The Necessity of Interoperability to Uncover the Full Potential of Digital Health Devices" has been published in JMIR Medical Informatics.

 

"Multicentric pilot study to standardize clinical whole exome sequencing (WES) for cancer patients" has been published in npj Precision Oncology.

 

Our paper "AMBAR-interactive alteration annotations for molecular tumor boards" has been published in Computer Methods and Programs in Biomedicine.

 

"A protocol for the use of cloud-based quantum computers for logical network analysis of biological systems" has been published in STAR Protocols.

 

Our paper "A systems biology approach to define mechanisms, phenotypes, and drivers in PanNETs with a personalized perspective" has been published in npj systems biology and applications.

 

"Supporting SURgery with GEriatric Co-Management and AI (SURGE-Ahead): A study protocol for the development of a digital geriatrician" has been published in PLoS One.

 

"Self-Assessment of Having COVID-19 With the Corona Check Mhealth App" has been published in IEEE Journal of Biomedical and Health Informatics.


Our first quantum computing paper "Leveraging quantum computing for dynamic analyses of logical networks in systems biology" has been published in Patterns.