Medical Systems Biology

You are here:  Teaching > Thesis Projects

Thesis Projects

PhD thesis topics in collaboration with the Department of Pathology:

  • Personalized medicine - Large language models for enhanced therapy options and decision support based on genomic alterations:
    Personalized medicine, a rapidly evolving field, is on the brink of a major breakthrough. It aims to revolutionize medical treatment by tailoring it to individual characteristics, such as genetic biomarkers. The advent of modern sequencing technology has opened up a wealth of information in oncology. This project is at the forefront of this revolution, exploring the potential of large language models to enhance therapy decision support based on genomic alterations in cancer. By leveraging advanced AI technology, healthcare providers can gain access to crucial insights, enabling them to make more informed decisions about treatment options. This has the potential to significantly improve the effectiveness and personalization of patient care, marking a major leap forward in the field of personalized medicine.
  • Explainable AI in the classification of tumor cells from histological images:
    Utilizing advanced image processing techniques and machine learning algorithms, healthcare professionals can accurately identify and classify tumor cells in histological images, providing valuable insights for diagnosis and treatment planning. This project aims to improve patient outcomes in oncology by improving the efficiency and accuracy of immunohistochemistry analysis.

Mögliche Themen für Bachelor-/Masterarbeiten oder Projekte:

      • Reverse engineering einer Campus-Management Lösung:
        Wir suchen einen motivierten Studenten zum Reverse Engineering einer Datenbanksoftware. Aufgrund einer Insolvenz des Softwareherstellers läuft die bestehende Lösung aus. In diesem Projekt soll die Möglichkeit eine Fortführung/Migration der Datenbank/GUI in Eigenregie geprüft werden. Vertiefte Kenntnisse in Software Engineering sind von Vorteil. Das Projekt kann auch als HiWi-Job begleitend finanziert werden.
      • Probabilistische Algorithmen für das Set Covering Problem:
        Das Mengenüberdeckungsproblem (Set Covering Problem) ist ein NP-vollständiges Problem. Dabei wird aus einem System von Teilmengen S eines Universums U eine möglichst kleine Teilmenge von S gesucht, die U vollständig abdeckt. Eine einfache Heuristik zur approximativen Lösung des Problems basiert auf einem Greedy-Ansatz. Diese approximativen Lösungen unterscheiden sich um einen Faktor von maximal ln|U| von der exakten (aber nicht effizient berechenbaren) Lösung. In diesem Projekt soll theoretisch und experimentell untersucht werden, ob und wie die Lösung der Greedy-Heuristik durch zufällige Änderungen der Algorithmen-Eingabe beeinflusst werden kann. Dabei soll zunächst eine Methode entwickelt werden, um zufällige kleine Teilmengensysteme zu erstellen und solche zu identifizieren, für die die Greedy-Heuristik stark von einer exakten Lösung abweicht. Solche worst-case-Eingaben sollen dann im Sinne einer "Smoothed Analysis" untersucht werden, d.h es soll ausgewertet werden, inwiefern bereits eine kleine Änderung der Eingabe zu einem deutlich besseren Ergebnis führt. Erkenntnisse hieraus sollen dann in die Entwicklung einer neuen probabilistischen Heuristik zur Lösung des Mengenüberdeckungsproblems einfließen.

Bei Interesse wenden Sie sich bitte an Prof. Dr. Hans A. Kestler. Geeignete eigene Themenvorschläge können ebenfalls berücksichtigt werden.

Job Openings

Wissenschaftlicher Mitarbeiter (m/w/d) 

 

Latest News

Our paper "Boolean network modeling and its integration with experimental read-outs: An interdiscipliary presentation using a leukemia model" has been published online first in Pathologie.

  1.  

    "Combined analysis of a serum mRNA/miRNA marker signature and CA 19-9 for timely and accurate diagnosis of recurrence after resection of pancreatic ductal adenocarcinoma: A prospective multicenter cohort study" has been published online first in the United European Gastroenterology Journal.

     

    "Identifications of Similarity Metrics for Patients With Cancer: Protocol for a Scoping Review" has been published in JMIR Research Protocols.

     

    "Recent Trends and Future Challenges in Learning from Data" has been published with Springer.

     

    Our paper "Permutation-invariant linear classifiers" has been published in Machine Learning.

     

    Our paper "Prediction of resistance to bevacizumab plus FOLFOX in metastatic colorectal cancer-Results of the prospective multicenter PERMAD trial" has been published in PLoS One.

     

  2. "Introducing a machine learning algorithm for delirium prediction—the Supporting SURgery with GEriatric Co-Management and AI project (SURGE-Ahead)has been published in Age and Ageing.

Our paper "Segmentation-based cardiomegaly detection based on semi-supervised estimation of cardiothoracic ratio" has been published in Scientific Reports.

 

"Prospective study validating a multidimensional treatment decision score predicting the 24-month outcome in untreated patients with clinically isolated syndrome and early relapsing–remitting multiple sclerosis, the ProVal-MS study" has been published in Neurological Research and Practice.

 

Our paper "GatekeepR: an R shiny application for the identification of nodes with high dynamic impact in boolean networks" has been published online first in Bioinformatics.

 

Our paper "The Necessity of Interoperability to Uncover the Full Potential of Digital Health Devices" has been published in JMIR Medical Informatics.

 

"Multicentric pilot study to standardize clinical whole exome sequencing (WES) for cancer patients" has been published in npj Precision Oncology.

 

Our paper "AMBAR-interactive alteration annotations for molecular tumor boards" has been published in Computer Methods and Programs in Biomedicine.

 

"A protocol for the use of cloud-based quantum computers for logical network analysis of biological systems" has been published in STAR Protocols.

 

Our paper "A systems biology approach to define mechanisms, phenotypes, and drivers in PanNETs with a personalized perspective" has been published in npj systems biology and applications.

 

"Supporting SURgery with GEriatric Co-Management and AI (SURGE-Ahead): A study protocol for the development of a digital geriatrician" has been published in PLoS One.

 

"Self-Assessment of Having COVID-19 With the Corona Check Mhealth App" has been published in IEEE Journal of Biomedical and Health Informatics.


Our first quantum computing paper "Leveraging quantum computing for dynamic analyses of logical networks in systems biology" has been published in Patterns.