Medical Systems Biology

You are here:  Teaching > WS 2016/2017 > Einführung in die Bioinformatik (MolMed) 

Einführung in die Bioinformatik (MolMed) 

Dozent: Prof. Dr. Hans A. Kestler
  apl. Prof. Dr. Rainer Schuler
  mit Dr. Ludwig Lausser
Code

 

MOME.Ba5006

 

 

 

 


Aktuelles

Die Klausur findet Freitag, den 10.02.2017 von 9:00 - 11:00 Uhr im Hörsaal RKU statt.


Die Vorlesung findet wöchentlich dienstags 08:00 - 10:00 Uhr in Raum 3001/3002 in O29 statt.

 

Die Übung findet wöchentlich dienstags 12:00 - 14:00 Uhr in Raum 3005/3006 in O29

(Lehrgebäude Medizin PC-Pool) statt.

Übungsblätter

Vorlesungsunterlagen

Datensätze

Beispieldaten

Zusatzmaterial

Hilfe zu R

 

Animation

Alignment

Sonstiges

Zitieren

Um einen Journal-Artikel wiederzufinden müssen beim Zitieren mindestens die folgenden Angaben vorhanden sein: Autor(en) (für mehr als zwei Autoren kann man den Namen des Erstautors und et al. angeben), vollständigen Titel des Artikels, Journal Name (oder eine Abkürzung dessen), JahrVolumeAusgabe (number)Seite(n).

Latest News

 

The position paper "Is there a role for statistics in artificial intelligence" has been published online first in Advances in Data Analysis and Classification.

 

Our paper "Corona Health - A Study- and Sensor-Based Mobile App Platform Exploring Aspects of the COVID-19 Pandemic" has been published in the International Journal of Environmental Research and Public Health.

 

Our paper "Patient empowerment during the COVID-19 pandemic: Ensuring safe and fast communication of test results" has been published in the Journal of Medical Internet Research.

 

Our paper "Perspective on mHealth Concepts to Ensure Users’ Empowerment–From Adverse Event Tracking for COVID-19 Vaccinations to Oncological Treatment" has been published in IEEE Access.

 

Our paper "Capturing dynamic relevance in Boolean networks using graph theoretical measures" has been published online first in Bioinformatics.

 

Our report protocol "Digitalization of adverse event management in oncology to improve treatment outcome—A prospective study protocol" has been published in PLoS One.

 

We are happy we could contribute to Beutel et al (2021) "A prospective Feasibility Trial to Challenge Patient-Derived Pancreatic Cancer Organoids in Predicting Treatment Response" published in MDPI Cancers.