Medical Systems Biology

You are here:  Teaching > SS 2017 > Einführung in die evolutionären Algorithmen

Einführung in die evolutionären Algorithmen

 
Dozent:     Prof. Dr. Hans A. Kestler
 
Dr. Ludwig Lausser

Code: CS8006.000






Vorlesungszeiten und Ankündigung

  • Vorlesung: dienstags, 8:00 Uhr - 10:00 Uhr, Raum O27 - 122
  • Übung: freitags, 12:00 Uhr - 14:00 Uhr, Raum O27 - 123
  • Achtung: Die erste Vorlesung findet am 25.4.17 statt.
 

Inhalt und Themen

Die Veranstaltung vermittelt Grundkenntnisse Evolutionärer Algorithmen. Es werden die derzeit gängigen Verfahren vorgestellt. Lernziele sind dabei die eigene Implementation der Algorithmen und deren Bewertung im Hinblick auf Anwendung und sinnvollen Einsatz. Weiterhin sollen Grundlagen und praktisch verwendbare Kenntnisse und Fähigkeiten vermittelt werden, die es erlauben eigene Problem-repräsentationen zu erstellen und entsprechende EA Bausteine zu entwickeln bzw. zu erweitern.

 

Folien

Übungsblätter

 

Sonstiges

 

Literatur

AE Eiben, JE Smith, Introduction to Evolutionary Computing, Springer 2003

K DeJong, Evolutionary Computation – A Unified Approach, MIT Press 2006

Latest News

 

Our paper "Interaction Empowerment in Mobile Health: Concepts, Challenges, and Perspectives" has been published in the Journal of Medical Internet Research mhealth and uhealth.

 

Our paper "Identification of dynamic driver sets controlling phenotypical landscapes" has been published in the Computational and Structural Biotechnology Journal.


Congratulations to Dr. Silke Werle for winning the 1st Prize with her pitch at the 1. Science Day held by ProTrainU. 

 

Our paper "Reconstructing Boolean network ensembles from single-cell data for unraveling dynamics in the aging of human hematopoietic stem cells" has been published in the Computational and Structural Biotechnology Journal.

 

The position paper "Is there a role for statistics in artificial intelligence" has been published online first in Advances in Data Analysis and Classification.

 

Our paper "Multi-Modal Pain Intensity Assessment Based on Physiological Signals: A Deep Learning Perspective" has been published in Frontiers in Physiology.

 

Our paper "Corona Health - A Study- and Sensor-Based Mobile App Platform Exploring Aspects of the COVID-19 Pandemic" has been published in the International Journal of Environmental Research and Public Health.

 

Our paper "Patient empowerment during the COVID-19 pandemic: Ensuring safe and fast communication of test results" has been published in the Journal of Medical Internet Research.

 

Our paper "Perspective on mHealth Concepts to Ensure Users’ Empowerment–From Adverse Event Tracking for COVID-19 Vaccinations to Oncological Treatment" has been published in IEEE Access.