Medical Systems Biology

You are here:  Research > Bioinformatics > Classification

Classification

An automated categorization of probes can provide assistance to medical investigators in many diagnostic settings. The models obtained from the training procedure of a classifier can provide insights into the structure of the data, in particular into the properties that distinguish the categories.

A combination of two single-threshold classifiers

A focus of our research lies on ensembles of single-threshold classifiers, which allow for an easy interpretation of the models. We also investigate methods to assess and compare classifier models theoretically and empirically, and to optimize classifier parameters.

 

Selected publications

 

L. Lausser, C. Müssel, A. Melkozerov, and H. A. Kestler. Identifying predictive hubs to condense the training set of k-nearest neighbour classifiers. Computational Statistics, 29(1-2):81-95, 2014.

L. Lausser, F. Schmid, M. Schmid, and H. A. Kestler. Unlabeling data can improve classification accuracy. Pattern Recognition Letters, 37:15-23, 2014.

T. M. Gress, H. A. Kestler, L. Lausser, L. Fiedler, B. Sipos, C. W. Michalski, J. Werner, N. Giese, A. Scarpa, and M. Buchholz. Differentiation of multiple types of pancreatico-biliary tumors by molecular analysis of clinical specimens. J Mol Med (Berl), 2012.

M. Watabe-Rudolph, Z. Song, L. Lausser, C. Schnack, Y. Begus-Nahrmann, M. Scheithauer, G. Rettinger, M. Otto, H. Tumani, D. R. Thal, J. Attems, K. A. Jellinger, H. A. Kestler, C. A. F. von Arnim, and K. L. Rudolph. Chitinase enzyme activity in CSF is a powerful biomarker of alzheimer disease. Neurology, 78(8):569–577, 2012.

C. Müssel, L. Lausser, M. Maucher, and H. A. Kestler. Multi-Objective parameter selection for classifiers. Journal of Statistical Software, 46(5):1–27, 2012.

L.-H. Meyer, S. M. Eckhoff, M. Queudeville, J. M. Kraus, M. Giordan, J. Stursberg, A. Zangrando, E. Vendramini, A. Moericke, M. Zimmermann, A. Schrauder, G. Lahr, K. Holzmann, M. Schrappe, G. Basso, K. Stahnke, H. A. Kestler, G. te Kronnie, and K.-M. Debatin. Early Relapse in Pediatric ALL is identified by Time To Leukemia in NOD/SCID mice and is characterized by a gene signature involving survival pathways. Cancer Cell, 19(2):206–217, 2011.

M. Buchholz, H. A. Kestler, A. Bauer, W. Böck, B. Rau, G. Leder, W. Kratzer, M. Bommer, A. Scarpa, M. K. Schilling, G. Adler, J. D. Hoheisel, and T. M. Gress. Specialized DNA arrays for the differentiation of pancreatic tumors. Clin Cancer Res, 11(22):8048–54, 2005.

Latest News

 

Our paper "Corona Health - A Study- and Sensor-Based Mobile App Platform Exploring Aspects of the COVID-19 Pandemic" has been published in the International Journal of Environmental Research and Public Health.

 

Our paper "Patient empowerment during the COVID-19 pandemic: Ensuring safe and fast communication of test results" has been published in the Journal of Medical Internet Research.

 

Our paper "Perspective on mHealth Concepts to Ensure Users’ Empowerment–From Adverse Event Tracking for COVID-19 Vaccinations to Oncological Treatment" has been published in IEEE Access.

 

Our paper "Capturing dynamic relevance in Boolean networks using graph theoretical measures" has been published online first in Bioinformatics.

 

Our report protocol "Digitalization of adverse event management in oncology to improve treatment outcome—A prospective study protocol" has been published in PLoS One.

 

We are happy we could contribute to Beutel et al (2021) "A prospective Feasibility Trial to Challenge Patient-Derived Pancreatic Cancer Organoids in Predicting Treatment Response" published in MDPI Cancers.