Medical Systems Biology

You are here:  Research > Bioinformatics


The advent of high-throughput biomolecular technologies has made high-dimensional biological data available for the investigation of many clinical settings. The large numbers of features and low numbers of probes in such data sets poses many challenges for their analysis. Machine learning approaches and statistical methods are essential for the interpretation of the data. For example, clustering methods can detect groups of similar probes. Feature selection techniques are employed to identify features (e.g. marker genes) that are relevant to distinguish certain phenotypes. Classification algorithms can predict the phenotype of a probe according to the measurements.

Latest News

Our paper "Big Data and Precision Medicine - Challenges and Strategies with Health Care Data" has been published in Journal of Data Science and Analytics.

Our paper "Stability of Signaling Pathways during Aging - A Boolean Network Approach" has been published in MDPI Biology.